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Atoms-in-Molecules Theory: Non-Hermitian Formulation 
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Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA 

Non-Hermitian formulations of the ICC (Intraatomic Correlation Correction) 
method as well as the SAIM (Scaled Atoms-in-Molecules) theory are applied 
to the ground state of the hydrogen molecule. It is found that the approximation 
of Hermitizing the energy matrix depresses the expectation value of the energy. 
In the SAIM treatment, this depression is particularly large; the non-Hermitian 
results are in quite good agreement with experiment. 
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Atoms-in-molecules (AIM) theory was formally developed by Moffitt [1] for the 
purpose of eliminating atomic correlation energy errors from molecular calculations. 
In this approach, the initial basis consists of antisymmetrized products of atomic 
substate eigenfunctions. Consider a diatomic molecule AB, and define the 
composite function 

r = ~'(r162 (1) 

Here, r is an eigenfunction for the atom A, with eigenvalue Ei~; the subscript i 
signifies that this is the particular eigenstate which appears in the ith basis function 
r Likewise, qb~ refers to a particular eigenstate of atom B, with eigenvalue Ep, 
which appears also as a component of the composite function r The eigen- 
function r  is antisymmetric with respect to its own NA electrons; Cp is anti- 
symmetric with respect to its own NB electrons; ~r is a partial or supplementary 
antisymmetrizer which causes the composite function r to be antisymmetric in all 
(NA + NB) electrons. 
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The Hamiltonian matrix elements can be written 

= (Er + E~)S,j + V,j 

where 

v,, = <o,l~ '~lr  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Equation (4) follows since the molecular electronic Hamiltonian ~ commutes 
with the partial antisymmetrizer ~ ' ,  and ~ can be partitioned into intraatomic and 
interatomic parts; this partition is determined by the assignment of electrons to 
the component atomic eigenfunctions ~p and ~]3 (the partition will differ for states 
of different "ionicity"). 

In Eq. (5), it is noted that E~ and Ey may be taken as experimental energies of 
the eigenstates of atoms A and B that comprise ~j;  also, V~j is an interatomic 
term, generally much smaller than the intraatomic contributions. Moffitt actually 
proposed two alternative procedures at this stage [1]. 

In Method I, he proposed that the S~j and G~, given by Eqs. (6) and (7) be obtained 
through the use of optimized orbital approximations to the exact atomic eigen- 
functions; 

n ~ . = ( e ~ +  B o o Ej)S~j + V~j (8) 

where the zero superscript denotes that such orbital approximations to the ~p, 
�9 ~, ~r and 4p~ have been utilized in evaluating those matrix elements. Such 
approximations yield a non-Hermitian matrix H ~. Since eigenvalues of such a 
matrix are not necessarily real, and hence may not be physically realistic, it has 
been customary to introduce an additional approximation 

/7 ~ = �89 ~ + n ~+) (9) 

where H ~+ is the adjoint of HL 

In developing Method II, Moffitt argued that 

V~j ~ H~ - (E? A + E~ (10) 

where all quantities on the right are now obtained from ab initio calculation, again 
using orbital wave functions which are optimal approximations of the atomic 
eigenfunctions. Incorporating Eq. (10) into Eq. (5), with S~j ~ S~, we obtain 

I-#I = [ I  ~ + S ~  + •  

where, for example, 

( l l )  

AEr = El" - E~ ̂  (12) 
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is a correlation energy correction. Again, in order to create a Hermitian matrix, 
the final approximation in Moflitt's Method II is 

/-IIr = �89 I~ + HI~+). (13) 

Note that our notation differs from that used by Moflitt. 

It was recognized early that the pure atoms-in-molecules approach contained a 
basic deficiency [2]. For example [3], the ionic structure H +H -, as represented by 
an accurate ground state H -  eigenfunction, yields even less ionic-covalent reson- 
ance energy for H2 than the original ab initio Weinbaum calculation. It was pointed 
out that atomic eigenfunctions must be scaled and/or deformed in order to over- 
come this basic deficiency [2]. 

Hurley suggested one approximate model, the ICC (intraatomic correlation 
correction) method [4], designed to account for such scaling. He argued that one 
should use an orbital basis optimum for the molecule (not for the atoms) in calcula- 
ting the H and S elements in Eq. (11). Let H~- and S~ denote such elements com- 
puted with orbitals optimumly scaled for the molecule; it is clear that the changes 
H~ -+ H~} and Soj --. S~i are significant due to interatomic effects of deformation. 
However, Hurley argued that correlation energy is remarkably unaffected by 
change of scale; thus, AEr + AE~ appearing in Eq. (11) should be calculated by 
the original Moffitt equation (12). Hurley's ICC model becomes 

H~ cc = H~j + S~j(AEr + AE~) (14) 

Again, an approximation like Eqs. (9) or (13) was prescribed to give a final 
Hermitian matrix/7 Ice. 

Finally, Au-ju A. Wu and the author [5] presented an exact scaled atoms-in- 
molecules (SAIM) theory in 1967. The basis in this theory is identical to Eq. (1) 
except that the atomic eigenfunctions are modified by introducing variational 
scaling parameters s~ and s~ into the component A-atom and B-atom eigen- 
functions. Exact equations were developed for determining, by reference to 
experimental atomic energies, all intraatomic contributions to the energy matrix 
elements. All other parts of the energy matrix elements, as well as all overlap 
elements, are interatomic in nature, and those parts are computed using the 
appropriate scaled orbital wave functions. Practical implementation of this theory 
also led to a non-Hermitian H matrix, and an approximation like Eqs. (9) or (13) 
was again considered essential. 

In (1969), Balint-Kurti and Karplus [6], introduced an Orthogonalized Moffitt 
(OM) method based upon Moffitt's second formulation, Eqs. (11-13), but utilizing 
Schmidt-orthogonalized composite functions. We have not included consideration 
of the OM method in this study. 

In 1976, Tully and Truesdale [7] introduced a non-Hermitian formulation of 
diatomics-in-molecules (DIM) theory. As a matter of fact, AIM and DIM theories 
are similar in that they both require solution of the general eigenvalue-eigenvector 
matrix equation 

H C  = SCE. (15) 
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Also, AIM and DIM theories are similar in that they both yield initially approxi- 
mate non-Hermitian Hamiltonian matrices, which have generally been Hermitized, 
as in Eqs. (9) or (13), before being introduced into Eq. (15). 

It had been observed in previous applications [8] of the DIM theory to H~ (using 
two covalent plus six ionic structures) that serious instabilities occur, especially as 
the internuclear distances are decreased. These instabilities could not be accounted 
for by "over-completeness"; the instabilities could be eliminated by the rather 
arbitrary neglect-of-overlap approximation. However, Tully and Truesdale [7], 
demonstrated that the instabilities were entirely absent in the non-Hermitian DIM 
calculation. 

The purpose of this paper is to report results of non-Hermitian AIM calculations 
on H2. Specifically, we consider Hurley's ICC model [4] defined by Eq. (14) and 
the Wu-Ellison SAIM theory [5], described above. In both cases, we admit four 
composite functions 

qb 1 = d'[lsA(1)~(1)lsB(2)~(2)] 

~b 2 = d'[lsA(1)/3(1)ls~(2)a(2)] (16) 

�9 ~ = ~ ( H - ,  1S) 

qb4 = ~ ( H - ,  *S). 

For ground state H2, symmetry requires two linear combinations, ~z - q~2 and 
qb8 + q~4, which correspond in their orbital approximations to the familiar covalent 
and ionic structures, which in turn define the Weinbaum calculation [9]. 

The purpose of this paper is to report results of non-Hermitian ICC and SAIM 
calculations and to compare these with the conventional ones which include also 
the additional Hermitization approximation. In all calculations, matrix elements 
over orbital functions were computed with a common orbital exponent ~, and the 
lowest molecular eigenvalue of Eq. (15) was minimized with respect to this orbital 
exponent for each internuclear distance R. In the SAIM theory [5], the scale 
factors s~ = s~ = ~/~0 are equal to ~ for composite functions qbl and qbz and equal 
to ~/0.6875 for composite functions qb3 and ~41. Results are given in Table 1. 

We also list in Table I the strictly ab initio results using the same basis in its orbital 
approximation, the so-called Weinbaum calculation; finally, we list results of  
Kolos and Wolniewicz [10], which we take as "experimental".  

We see that the Hermitization approximation depresses the calculated molecular 
energy, just as observed in the DIM calculation on H3. However, the complete 
instability obtained in the Hermitian DIM H3 calculation [7, 8] is not obtained here 
in the AIM treatments of H2. 

The original SAIM results on H2, using a Hermitian matrix, were depressingly 
low as is seen in Table 1. But the non-Hermitian results are in very good agreement 

1 C ~ = 0.6875 is the optimum Is-orbital exponent in the ls 2 approximation of H -. 



Atoms-in-Molecules Theory: Non-Hermitian Formulation 245 

Table 1. Electronic energy of H2 using Weinbaum function (W), ICC and SAIM theories, 
Hermitian (H) and non-Hermitian (NH) formulations, compared with experiment 

Electronic Energy ~ 

ICC SAIM 

R" ~opt b W H NH H NH Expt'l a 

0.6 1.45 0.2664 0.2474 0 . 2 6 0 7  0 . 1 3 8 7  0.2559 0.2304 
0.8 1.37 0.0131 -0.0035 0 .0037  -0.0917 -0.0109 -0.0210 
1.0 1.31 -0.0937 -0.1095 -0.1046 -0.1787 -0.1249 -0.1245 
1.2 1.25 -0.1362 -0.1514 -0.1477 -0.2054 -0.1691 -0.1649 
1.4 1.19 -0.1477 -0.1623 -0.1594 -0.2044 -0.1794 -0.1745 
1.6 1 .16 -0.1440 -0.1577 -0.1553 -0.1905 -0.1728 -0.1686 
1.8 1.13 -0.1325 -0.1455 -0.1433 -0.1707 -0.1580 -0.1551 
2.0 1 .10 -0.1177 -0.1297 -0.1278 -0.1488 -0.1397 -0.1381 
3.0 1 .02 -0.0467 -0.0532 -0.0524 -0.0559 -0.0543 -0.0573 

Internuclear distance in bohr units: 1 bohr = 5.292 nm. 
b Optimum orbital exponent for Weinbaum (W) function. 

For ICC and SAIM, same ~ appropriate for R /> 2; larger ~ obtained as R decreases; e.g., for 
R = 0.6, ~opt = 1.46, 1.47, 1.51 and 1.49 for ICC-H, ICC-NH, SAIM-H and SAIM-NH, 
respectively. 

~ Electronic energy including nuclear repulsion relative to H + H in hartree units: 1 hartree = 
27.21 eV. 

a ReL [10]. 

with experiment. Tile differences with respect to the ICC model are not  so pro- 

nounced.  

We should add that  if one were to utilize extremely accurate ab initio approxima- 

t ions to the componen t  atomic eigenfunctions in a proper SAIM calculation, the 

H matrix would tu rn  out to be Hermit ian  (or nearly so), and the final computed 

molecular  energies 'would satisfy the variat ional  principle [11]. However, when 

using more approximate atomic funct ions to evaluate interatomic contr ibut ions,  
it appears that the final approximat ion of forcing H to be Hermi t ian  may depress 

significantly the lowest molecular eigenvalue. Perhaps one should omit  this final 

approximat ion  in ali[ A I M  calculations. 

In our  experience thus far with non-Hermi t i an  formulat ions of A I M and D I M 
theories, we have yet to encounter  any complex eigenvalues. 
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